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ABSTRACT
Robot path-planning is a central task for navigation and most path-planners

perform well in mapped environments with explicit obstacle boundaries. However,
many obstacle fields are better defined by the probability of obstacles and obstacle
geometries rather than by explicit locations. Few tools and data structures exist,
other than repeated simulations, to predict robot mobility in these situations.
Previously, it was shown that geometric obstacle properties could be used to
estimate properties of paths routing around these obstacles, looking only at maps
and avoiding the task of path planning [1]. This required knowing obstacle
geometries relative to travel direction. This work presents a method for representing
obstacle geometry, at arbitrary orientations and positions, and therefore a probabilistic
model for determining if space near an obstacle is occupied. This paper explains
the theory behind this method, uses this method to calculate the portion of a
straight path overlapped by obstacles, called linear occupancy ratio, from simulated
obstacle fields, and compares these results to measured occupancy ratio values to
validate the probabilistic model.
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1. INTRODUCTION

In the field of ground robotics, maps of obstacle
fields can be used to solve for paths that keep the

vehicle out of obstacles or reduce its time spent
traversing obstacles, but if the mission is not known,
it may be difficult to estimate path properties. There
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are several well-known ways to represent noise or
uncertainty in a mapped environment [2–5]. In
addition to modeling noise, these methods can also
be used to model untracked objects or objects that
have not been recently tracked and whose states may
have changed [6]. Additionally, many methods exist
to semantically classify or track objects, despite the
presence of uncertainty [7–9]. However, many of the
resulting maps still require some mission knowledge,
e.g. start and goal locations relative to the mapped
obstacles, to plan a path from which to analyze
path properties such as linear occupancy ratio. This
work will show that linear occupancy ratio can be
estimated without planning a path and therefore
without knowing specific mission information such
as start and goal locations.

Methods exist to build statistical likelihood maps
based on observations [10, 11]. These techniques
are not mutually exclusive with the data structure
presented in this paper, rather, they could be used
to build maps that are then stored as the occupancy
probability functions presented here.

Previously, an experimental relationship was
shown between map properties, such as obstacle
size and density, and path properties [12]. This
relationship can also be approximated without
experiments, using only map properties [1]. The key
contribution of this paper is a method for determining
the probability of occupation for a mapped obstacle
field without knowing the path or mission and
therefore without knowing the vehicle position or
orientation relative to the obstacles. This can be
used in mission planning to describe the portion of
a straight path through an environment that would
require obstacle traversal.

The remainder of this paper is organized as
follows: section 2 describes the way maps and
paths will be measured and represented in this work,
section 3 details the ways that obstacle geometry

and position can be probabilistically represented,
section 4 utilizes these geometry and position
representations to estimate a map property, linear
occupancy ratio, and compares the result to measured
data from simulation, and section 5 discusses
applications of this method and areas for future work.

2. MAP AND PATH CHARACTERIZATION
In the remainder of this work, maps refer to 2D

planes of free space populated by regions of occupied
space representing traversable obstacles. Obstacles
in the field may be sparse such that a path through the
environment would barely be impacted by them, or
obstacles may nearly tessellate the free space, forcing
paths through the environment to route around or
through many occupied regions. Polytopes represent
obstacles and are stored in vertex-representation
(vrep) [13]. Convexity is enforced so that collision
checking calculations are simplified because a line
segment will never enter, exit, and reenter a convex
polytope [13].

To describe the size and spacing of obstacles
in a field, this work uses departure ratio, rD,
a dimensionless parameter based on the average
maximum radius, R̄, of all polytopes in the field
and number of obstacles per unit area, ρ, defined in
equation (1). Higher departure ratio implies greater
density of obstacles and/or larger obstacles. As
departure ratio approaches 1, the obstacle field is
nearly fully occupied. As departure ratio approaches
0, the obstacle field is nearly empty.

rD = R̄
√
ρ (1)

3. OBSTACLE POSITION AND GEOMETRY
REPRESENTATIONS
This work presents two different methods for

representing obstacle geometry. These methods are
used to estimate occupancy ratio, a metric of how
much space is occupied in a given obstacle field.
Linear occupancy ratio is equal to the portion of a
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straight line of unit length overlapped by obstacles;
this affects both the amount of obstacle traversal
that would be required by a vehicle crossing through
obstacles and the amount of detouring that would be
required by a vehicle routing around obstacles and
is therefore a useful map property for understanding
path complexity. This is described visually in figure
1.

Figure 1: A straight line segment drawn through an
obstacle field at an arbitrary location. The orange
portions are in free space while the green portions
are occupied by obstacles. Obstacles shown in red
are those intersected by this line.

An obvious method to find linear occupancy
ratio, rL,occ, would be to take the square root of area
occupancy ratio, rA,occ, the portion of a unit square
area occupied by obstacles, from some sampled area
of the map. However, this approximation only holds
for nearly square obstacles as shown in equations
(2-5) which refer to dimensions, a, b, and c, defined
in figure 2. The area occupancy ratio of a square field

containing a square obstacle is as follows:

rA,occ,square =
(b− a)2

c2
(2)

Therefore it is easy to see that the linear
occupancy ratio of a square field containing a square
obstacle, for a horizontal line passing through the
center of the field, is equal to the square root of the
expression shown in equation (2):

rL,occ,square =
(b− a)

c
=

√
rA,occ,square (3)

However, if a non-square obstacle in a square
field is analyzed, in this case a right triangle, the area
occupancy ratio becomes the following:

rA,occ,triangle =
1
2
(b− a)2

c2
(4)

The calculated linear occupancy ratio for this
triangular obstacle, for a horizontal line passing
through the center of the field, is then less than the
square root of area occupancy ratio found in equation
(4):

rL,occ,triangle =
1
2
(b− a)

c
<

√
rA,occ,triangle (5)

Since it cannot be assumed that all fields and all
obstacles are squares, taking the square root of area
occupancy ratio should not be used to estimate linear
occupancy ratio.
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Figure 2: Diagram of the dimensions used in
equations (2-5) to show that the square root of area
occupancy only equals linear occupancy for square
obstacles in square fields.

To know the occupied or unoccupied length for
a unit-length line, the occupied length per obstacle
encounter and the number of obstacle encounters
both need to be known. Prior work showed how
to estimate the number of encounters accurately
from ray casting [1]: lines are drawn through the
mapped obstacle field and the number of obstacle
intersections is tallied for each line and normalized
by the length of the line. These lines are spaced
apart by a decorrelation distance, related to obstacle
size, so that neighboring lines are less likely to
encounter the same series of obstacles. The number
of intersections per unit length is then averaged for
the set of lines drawn through the obstacle field to
produce a single linear obstacle density number.

To determine the traversal distance required for
each encounter, independent of obstacle orientation,
the probability of space being occupied at a given
radius from the centroid of the obstacle can be
analyzed. This can be thought of as rotating the
obstacle about its centroid to create a direction
agnostic probability density function (PDF), an
illustration of which is shown in figure 3. This work
will discuss two ways to estimate occupied space per
obstacle.

Figure 3: An illustration of an obstacle, rotated about
its centroid, forming a radial probability density
function where larger at larger radius values, shown
in green, space is less likely to be occupied and at
smaller radius values, shown in red, space is more
likely to be occupied.

3.1. Inscribed Circle Estimate of Geometry
In this method, the size of an inscribed circle

is estimated, as this is the region where the radial
probability density function equals one, in other
words, the radius at which the obstacle is always
expected to occupy space regardless of the angular
position. The estimated radius of an inscribed
circle, R̂min, can be estimated using polytope vertex
angle, θvertex, averaged over the entire field, and the
distance from the centroid to the nearest vertex for
each polytope, Rmin, averaged over the entire field
as shown in equation (6).

R̂min = sin(
θ̄vertex

2
) · R̄min (6)
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Once the estimated size of the inscribed circle
is known, the average traversal distance required
to cross that circle must be found. This is the
average width of the circular obstacle model, equal
to the average value of a function representing the
boundary of a circle. This is shown mathematically
in equations (7-9) and visually in figure 4. The
average value of function, f(x), from input x = a
to input x = b is:

favg =
1

b− a
·
∫ b

a
f(x)dx. (7)

Modifying equation (7) to give the average value of a
function representing a circle with radius, r is then:

fcirc,avg =
1

r − (−r)
·
∫ r

−r

√
r2 − y2dy (8)

=
1

2r
· πr

2

2
=

πr

4
. (9)

Figure 4: A diagram of the parameters used in
the method for estimating the size of the average
inscribed circle and the average width of that circle.
A polytope vertex is shown on the left and a circular
obstacle model is shown on the right.

3.2. Radial Probability of Occupation to
Represent Geometry

In this method, obstacles are represented by
the radial PDF introduced earlier, describing the
probability of space at some radius from the centroid

of the obstacle being occupied. The expected value
of this PDF then informs an estimate of obstacle size.

First, equations for the polytope wall positions
are converted from vertex representation in Cartesian
coordinates to polar coordinates giving a function for
radius as a function of angle from horizontal, R(θ).
This is shown in figure 5.

Figure 5: On the top is an example polytope, plotted
in a Cartesian plane from both its rectangular and
polar definitions. On the bottom is the polar function
representing the same polytope. The minimum
radius is shown in red on both plots and the
maximum radius is shown in green.

Sampling this function at discrete angles, yields
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a histogram, and therefore, from the law of averages,
a probability density function (PDF) indicating the
likelihood of a radius value, R, at any angular
position, θ. From this, the complement of the
cumulative density function (CDF) can be derived
which is the probability of occupation, at some radius
from the centroid. Once this function is known,
the expected value of this function can be found
to determine the expected width of an obstacle,
independent of its orientation. This will be called the
expected depth, d. For the polytope shown above,
the PDF and complement of the CDF are shown in
figure 6. The minimum radius for this polytope,
below which the probability of occupation should be
1, is shown in red. The maximum radius for this
polytope, above which the probability of occupation
should be 0, is shown in green. The expected depth
value, d, is shown in black. Notice the mean value
of the minimum (6m) and maximum (16 m) is 11
m. The expected depth is less than this because the
probability of occupation is higher at lower radius
values, thus skewing the expectation lower.

Figure 6: On the top is empirical PDF of polytope
radii. On the bottom is the complement of the CDF,
representing the probability of space being occupied
at some radius.

The expected value, d, mentioned above is the
radius of a circular obstacle model, calculated as
shown in equation (10) using the complement of the
CDF, P (R0 ≤ R). A visual representation of this
is shown in fig. 7. The probability of occupation
will form a “bulls-eye” with the higher occupancy
probability being concentrated at lower radii and the
occupancy probability decreasing radially outward.
This can be used to estimate the expected size of an
encountered obstacle, independent of obstacle angle
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relative to the direction of travel, but it is assuming
that the obstacle is encountered along its centerline.

d =
Rmax∑
R=0

P (R0 ≤ R) ·∆R (10)

Figure 7: A diagram of the radial probability of
occupation, independent of angle from the centroid.
The effective value of the radius, formed by a
probability weighted sum of radii is shown as a red
circle.

To find the expected obstacle size independent
of both obstacle orientation and obstacle position
relative to the direction of travel, another numeric
integration is necessary. Integrating the probability
of occupation, P , along a horizontal traversal line
of length, d(o), at different lateral positions offset
from center, o, then yields effective depth at different
offsets, deff , allowing for independence of position.
This can be thought of as integrating the radial
probability “bulls-eye” along the the line of variable
length as a function of lateral offset, d(o), rather
than instead of along the axis going through the
centroid of the ”bulls-eye”, where offset, 0, as was
shown previously to find nominal expected depth,
d. The relationship between the length of the line to
integrate along, d(o), and lateral offset is shown in

equation (11). The numeric integration is then shown
in equation (12). A schematic of the parameters used
in this process is shown in figure 8.

d(o) =
√
R2

max − o2 (11)

deff =
d(o)∑
d=0

P (R0 ≤
√
o2 + d2) ·∆d (12)

Figure 8: A schematic of parameters used in
calculating expected depth as a function of lateral
offset from the centroid of an obstacle. Lateral offset
of the orange traversal vector is shown in yellow. The
offset determines the length of the red line, along
which the “bulls-eye” probability of occupation will
be integrated numerically with step, ∆d.

The effective depth as a function of offset can
be plotted for every polytope in an obstacle field.
The effective depth curve for a single polytope is
expected to show that at an offset of 0, the effective
depth is the expected value, d from Section 3.1. At an
offset greater than or equal to the maximum radius,
the effective depth approaches 0 as the lateral offset
indicates the obstacle will not be encountered.

Analyzing this curve for all polytopes in a field
shows they share a similar shape with different
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scales. This is expected for a field of consistent
obstacle aspect ratios. These curves can be averaged
to give an expected effective depth curve independent
of encountered polytope. The curves for all obstacles
in an obstacle field and the average curve of these is
shown in figure 9. Looking at the average value of
the average curve gives an obstacle size estimate that
is independent of both orientation and position.

Figure 9: Effective depth as a function of offset
position shown for every polytope in an obstacle
field. The heavy black line is the average curve,
representing the expected geometry independent of
encountered obstacle.

4. RESULTS

Combining the statistical representations
of obstacle size from Section 3 with the
ray-casting-based estimate for the number of
encountered obstacles [1], an estimate for linear
occupancy ratio can be produced and compared to
measured values from simulation. A comparison of
these estimates and measured data is shown in figure
10.

Figure 10: A comparison of linear occupancy
ratio calculated using both probabilistic obstacle
representations mentioned in Section 3 plotted with a
scatter of measured occupancy ratios from simulated
obstacle field maps. The orange curve is calculated
from the inscribed circle method described in Section
3.1, and the purple curve is calculated from the radial
probability of occupation as described in section 3.2.

It is worth noting that the radial probability
of occupation method will provide a conservative
estimate of obstacle size because the polytope size
distribution is right skewed, as shown in figure 11,
and therefore encounters with outliers of larger size
may easily increase the measured values. This is
because the floor of polytope size is zero while
the ceiling approaches infinity. The more circular
the polytopes in a field are, the less skewed the
distribution of radii would appear. The expected
value will be slightly less than the average value. The
inscribed circle estimate works well for obstacles
with approximately square aspect ratios, but is
expected to not work well for more oblong obstacles,
while the effective depth method is expected to
be robust to oblong obstacles as it is based on an
empirically sampled probability density function.
Another observation to note from this testing is that
the effective depth curves shown in figure 9 are very
sensitive to the offset value selected, which is clear
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from the steep slope of approximately −2 in the
offset range from 10 − 20 meters. The implications
of this will be discussed further in the next section.

Figure 11: A histogram of polytope radius values,
sampled at every degree from every polytope.

5 CONCLUSIONS
One application of this method would be

compressing representations of obstacle field maps,
where representing an entire field as “bulls-eyes”
formed from radial occupancy probability, spaced
apart by average obstacle density could be achieved.
In this way, the entire field can be approximated
by just the average effective depth curve from
figure 9 and a scalar linear density value. This
probabilistic representation could also be used to
represent obstacles out of the field of view or in
unmapped regions or seldom mapped regions, until
better information is available to updated predictions.
The effective depth curves developed in this work
could also be extended to create a path planner that
intelligently “apexes the turn” around obstacles to
optimize travel speed, even for obstacles that cannot
be seen, by allowing the planner to pass obstacles
at a lateral offset value that has some acceptable
probability of encountering occupied space without

having to conservatively route around obstacles
based on their maximum possible size. This is
powerful because it allows for planners to go beyond
the binary through or around decision and solve for
an optimal offset distance, at which the path planner
should accept the risk of passing through the shape
by “clipping the corner” and taking a straighter
path while also minimizing time spent traversing
obstacles.

Another way to apply radial probability of
occupation to representing obstacles, is to capture
uncertainty in object size rather than accounting
for uncertainty of orientation. E.g. if a tree top
is visible from an overhead satellite map, a map
of radial probability functions could represent the
likely trunk locations. This could allow a planner to
attempt to route under the canopy while avoiding the
tree trunks.

The limitations of this work include that
simulated maps were generated by forming Voronoi
cells [14] around the Halton point set, to generate
pseudo-random yet evenly spaced obstacle locations
[15]. In other words, the simulated polytope
obstacle fields used in this work were likely to
have evenly spaced obstacles with approximately
square aspect ratios. Less uniformly spaced and
uniformly sized obstacles may be less accurately
approximated by this method. As mentioned in
the previous section, the inscribed circle estimate
assumes nearly circular obstacles and would not
work well for non-square aspect ratios while the
effective depth method is expected to still perform
well so long as obstacles are still randomly oriented
as it uses an empirically derived probability density
function. However if obstacles had non-square
aspect ratios and were not randomly oriented, i.e.
if the aspect ratios of obstacles were aligned on some
axis, then the empirically derived probability density
function may not capture this as it is dependent
only on radius. Thus, to apply this method to
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non-square aspect ratios and non-randomly oriented
obstacles it may be necessary to extend this method
to higher dimensions, i.e. to have the probability
density function depend on more than one variable.
E.g. if obstacles are longer in the x-direction
and smaller in the y-direction and are consistently
oriented that way, it would make sense to form a
higher dimensional expected depth function with
probability of occupation as a function of x-position
relative to obstacle centroid and probability of
occupation as a function of y-position as a function
of centroid. Thus the linear occupancy ratio estimate
would be able to have a direction-dependence. This
extension to higher dimensions is non-trivial and an
area for future work.

As mentioned in the previous section, the
effective depth curve changes dramatically for
different offset values. This work assumed all offset
values were equally likely to occur when selecting
an expected offset and therefore an expected depth.
Thus, it may be possible to develop a method
to intelligently inform expected offset, based on
expected obstacle density, as traversing a more
densely populated field would require crossing more
obstacles at low offset values, close to their centers,
while traversing a more sparsely populated field
would result in grazing more obstacles at larger offset
values. Strategically selecting an offset value rather
than assuming all offset values are equally likely to
occur could improve the accuracy of this estimate.

In summary, this paper presented a method
for representing obstacles of unknown position and
orientation using the concept of a probability of
occupation, spaced apart by an expected density.
This allows for estimating properties such as linear
occupancy ratio without knowing the path or mission
and therefore without knowing the vehicle position
or orientation relative to the obstacles. This work can
be applied to abstract entire maps to a scalar number
representing density and a function representing
expected obstacle size as a function of lateral offset

of the traversal direction.
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